Polynomials

- If $\mathrm{p}(\mathrm{x})$ is a polynomial in x , the highest power of x in $\mathrm{p}(\mathrm{x})$ is called the degree of the polynomial $\mathrm{p}(\mathrm{x})$.

Types of Polynomials

- A polynomial of degree 1 is called a linear polynomial.
- A polynomial of degree 2 is called a quadratic polynomial.
- A polynomial of degree 3 is called a cubic polynomial.

Zeroes of a Polynomial

- If $p(x)$ is a polynomial in x, and if k is any real number, then the value obtained by replacing x by k in $p(x)$, is called the value of $p(x)$ at $x=k$, and is denoted by $p(k)$.
- A real number k is said to be a zero of a polynomial $\mathrm{p}(\mathrm{x})$, if $\mathrm{p}(\mathrm{k})=0$.
- Geometrical Meaning of Zeroes of Polynomials

- The equation $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}$ can have three cases for the graphs
- Case (i): Here, the graph cuts x-axis at two distinct points A and A^{\prime}.

(i)

(ii)

Case (ii): Here, the graph cuts the x -axis at exactly one point

(i)

(ii)

Case (iii): Here, the graph is either completely above the x -axis or completely below the x -axis.

(i)

(ii)

Relationship between Zeroes and Coefficients of a Polynomial

If α and β are the zeroes of the quadratic polynomial $p(x)=a x^{2}+b x+c, a \neq 0$, then you know that $x-\alpha$ and $x-\beta$ are the factors of $p(x)$.
$A+\beta=-b / a$
$\alpha \beta=c / a$

Division Algorithm for Polynomials

- If $p(x)$ and $g(x)$ are any two polynomials with $g(x) \neq 0$, then we can find polynomials $q(x)$ and $r(x)$ such that $\mathrm{p}(\mathrm{x})=\mathrm{g}(\mathrm{x}) \times \mathrm{q}(\mathrm{x})+\mathrm{r}(\mathrm{x})$,
where $r(x)=0$ or degree of $r(x)<$ degree of $g(x)$.
This result is known as the Division Algorithm for polynomials.
- Consider the cubic polynomial $x^{3}-3 x^{2}-x+3$.

If one of its zeroes is 1 , then $x-1$ is a factor of $x^{3}-3 x^{2}-x+3$.
So, you can divide $x^{3}-3 x^{2}-x+3$ by $x-1$,
Next, you could get the factors of $x^{2}-2 x-3$, by splitting the middle term, as:
$(x+1)(x-3)$. This would give you:
$\mathrm{x}^{3}-3 \mathrm{x}^{2}-\mathrm{x}+3=(\mathrm{x}-1)\left(\mathrm{x}^{2}-2 \mathrm{x}-3\right)$
$=(x-1)(x+1)(x-3)$
So, all the three zeroes of the cubic polynomial are now known to you as
$1,-1,3$.

